Theo yéu cu ciia khich hing, trong mt nim
qua, ching t61i 48 dijch qua 16 mén hoc, 34
cudn séch, 43 bai béo, 5 sb tay (chua tinh cic
tai liéu tir nim 2010 tr& vé& truéc) Xem & ddy

DICH VU "Cpisau mot lan lién lac, viée

DICH S it
TIENG

ANH |
CHUYRN Gia ca: co thé giam dén 10

NGANH nhin/l tran
NHANH

NHAT VA Chat luc_mg:Tgo dung niém tin cho
khach hang bang céng nghé 1.Ban

XAC théy duoc to.:ém b6 ban dich; 2.Ba,n

NHAT danh gia chat lwong. 3.Ban quyét
dinh thanh toan.

Tai liéu nay dwgc dich sang tiéng viét béi:

VA A2 L E T A (W 11|

Xem thém céc tai liéu da dich sang tiéng Viét caa ching toi tai:

http://mientayvn.com/Tai lieu da dich.html

Dich tai liéu cua ban:

http://mientayvn.com/Tim hieu ve dich vu bang cach doc.html

Tim kiém ban géc tai day:

https://drive.google.com/drive/folders/1Z2jz7DM7W4iV1gojox5kc UUiNpx2gSH
R?usp=sharing

Mining negative generalized | K§ thuat khai phé tri thuc tong quat
knowledge from relational databases hoa phu dinh tir co s¢ dir liéu quan hé

http://mientayvn.com/Tai_lieu_da_dich.html
http://mientayvn.com/Tim_hieu_ve_dich_vu_bang_cach_doc.html
https://drive.google.com/drive/folders/1Zjz7DM7W4iV1qojox5kc_UUiNpx2qSHR?usp=sharing
https://drive.google.com/drive/folders/1Zjz7DM7W4iV1qojox5kc_UUiNpx2qSHR?usp=sharing

checked

Attribute-oriented induction (AOI) is a
useful data mining method for
extracting generalized knowledge from
relational data and users’ background
knowledge. Concept hierarchies can be
integrated with the AOI method to
induce multi-level generalized
knowledge. However, the existing AOI
approaches are only capable of mining
positive knowledge from databases;
thus, rare but important negative
generalized knowledge that s
unknown, unexpected, or contradictory
to what the user believes, can be
missed. In this study, we propose a
global negative attribute-oriented
induction (GNAOI) approach that can
generate comprehensive and multiple-
level negative generalized knowledge
at the same time. Two pruning prop-
erties, the downward level closure
property and the upward superset
closure property, are employed to
improve the efficiency of the
algorithm, and a new interest measure,
nim(cl), is exploited to measure the
degree of the negative relation.
Experiment results from a real-life
dataset show that the proposed method
is effective in finding global negative
generalized knowledge.

1. Introduction

The information explosion has been a
serious challenge for cur-rent
information gathering institutions.
There is an urgent need for improved
technology that can access, analyze,

Quy nap huéng thuoc tinh (AIO) Ia
mot phuong phap khai pha dir liu
trich xudt tri thuc téng quat tir dir ligu
quan hé va co sé tri thic nén tang cua
ngudi dung. Phan cap khai niém c6
thé tich hop voi phuong phap AIO dé
tao ra tri thuc tong quat da muc. Tuy
nhién, nhitng phuong phap AIO hién
tai chi c6 kha nang khai thac tri thac
khing dinh tir cac co s dir lidu; vi thé
nhitng tri thac téng quat pha dinh
hiém nhung quan trong chang han nhu
nhitng tri thac chua duoc biét dén, bat
ngo, hodc trai nguoc Voi niém tin cua
nguodi dung co thé bi bo qua. Trong
nghién ciu nay, chung toi dé xuat
phuong phap quy nap hudng thudc
tinh phu dinh toan cuc (GNAIO) c6
thé tao ra tri thic tong quat phi dinh
da muc va toan di¢n cung mot lac. Hai
tinh chat cat tia, tinh chat dong mirc
dudi va tinh chat dong superset trén
dugc dung dé cai thién hiéu suat cua
thuat toan, va mot dai luong mai dac
trung cho mic do quan tam, nim(cl),
duoc khai thac dé do muac do cua
twong quan nghich. Két qua thuc
nghiém tur tap di liéu thuc té ching to
rang phuong phap do chung toi dé
Xuat hiéu qua trong viéc tim kiém tri
thirc tong quat phu dinh toan cuc.

summarize, and interpret information
intelligently and automatically [1].
Data mining has been proposed in
response to this demand, and many
varied approaches have been developed
[2-5]. Data generalization, which
generalizes a large set of task-relevant
data from a relatively low conceptual
level to higher conceptual levels, is one
of the most important approaches for
summarizing data characterization.
Such a technique can generate concise
and abstract knowledge, which helps in
providing overall pictures of the data at
different levels [6,7]. We call such data
generalized knowledge.

Attribute-oriented induction (AOI),
which was first introduced by Cai et al.
[8], is a data mining technique used to
extract generalized knowledge from
relational data and users’ background
knowledge. This essential background
knowledge takes the form of a concept
hierarchy that is associated with each
attribute in a relational database [9]. A
concept hierarchy often refers to
domain knowledge, and is a way to
store relationships between specific
concepts and generalized concepts
[10]. The integration of the concept
hierarchies and AOI methods can allow
us to induce multi-level and cross-level
generalized knowledge, which can
provide good decision making support
for different levels of management.

There is no doubt that the AOI
technique is very useful for find-ing

general characteristics from a relational
database, and it has been applied in
many areas, such as spatial patterns
[11,12], med-ical science [13,14],
intrusion detection [15,16], strategy
making [17], and financial prediction
[18]. However, as we can see from
these applications, existing AOI
approaches are only focused on mining
positive generalized knowledge from
databases. In the real world, there is a
type of knowledge that is unknown,
unexpected, or contradictory to what a
user believes, called negative general-
ized knowledge in this study, which is
more novel, meaningful, and
interesting to the user than positive
facts.

Thus, discovering negative generalized
knowledge from a rela-tional database
can reveal more interesting
phenomena. For exam-ple, a medical
database may tell us that although
many patients are Taiwanese and
numerous patients have H1N1, only a
few Tai-wanese have this disease. This
interesting negative fact suggests that,
due to some unknown reasons,
Taiwanese are more resistant to H1N1.
However, this negative fact can never
be found using traditional approaches,
which only find positive relations or
associations between data.

In this work, a generalized tuple is
defined as an association of attribute
values in concept hierarchies. For

example, (Taiwanese, Pneumonia) and
(Taiwanese, H1N1) are examples of
generalized tuples. A generalized tuple
IS negative if its actual occurrence is
significantly lower than its expected
occurrence. The aim of this paper is to
find all negative generalized tuples. To
the best of our knowledge, the mining
of negative tuples has been neglected in
previous research on AOI; instead, the
previous studies mined only positive
generalized facts. As a result of the low
frequency of negative generalized
tuples, which might contradict our
expectations, these tuples may never be
found.

To resolve this problem, this study
proposed a novel approach, called
global negative AOI (GNAOI), which
can generate comprehensive and
multiple-level negative generalized
knowledge at the same time. Only one
pass over a database is necessary with
the developed algorithm, and the
efficiency of the algorithm is improved
by the employment of two pruning
properties, the downward level closure
property and the upward superset
closure property, and a new interest
measure, nim(cl), is exploited to
measure the negative degree.
Furthermore, it is not appropriate to
generate all negative generalized tuples
without information reduction, because
too much information may hinder users
from applying knowledge. Therefore,
we must come up with some way of
finding only the interesting negative

generalized tuples. Accordingly, we
use the following criteria to search for
interesting negative generalized tuples:
(1) Minimum support and expected
support constraint: Each value in a
negative generalized tuple must satisfy
the minimum support constraint.
Meanwhile, a negative generalized
tuple must satisfy the minimum
expected support constraint. The
rationale is that if a generalized tuple
covers only a tiny frac-tion of data, it is
more likely to represent noise rather
than some other more interest
characteristic. Therefore, we require
that each generalized tuple must satisfy
a minimum representability constraint.
(2) Strong negative association: A
negative tuple represents a large
deviation between the actual and the
expected sup-ports of a tuple.
Therefore, we say two values have
strong negative association if the
probability of their co-occurrence is
significantly ~ smaller than the
multiplication of their indi-vidual
probabilities. The deviation of a
negative generalized tuple is measured
by the relative ratio of its actual
support and its expected support
occurrence. Only those generalized
tuples with strong deviations are worth

keeping.
(3) Redundant measure constraint:
The multiple-level taxonomic

structures means that a generalized
tuple can induce many similar tuples
simply by replacing some attribute
values with their ancestors or
descendants in the taxonomy.

Accordingly, many generalized tuples
become redundant because their
information can be reasonably induced
from other tuples; such tuples are
unnecessary and should be removed.
The remainder of the paper is
organized as follows. In Section 2, the
AOIl method and related work are
reviewed. In Section 3, we define the
problem of mining global negative
generalized knowledge from a
relational database. In Section 4, the
mining algorithm, GNAOI, is
presented. The results of our
performance evaluation are given in
Section 5. Finally, some conclusions
are drawn in Section 6.

2. Related work

AOI is a set-oriented database mining
method that generalizes the task-
relevant subsets of the data, attribute by
attribute [19]. The generalization of
each attribute is associated with a
concept hierarchy. The concept
hierarchies represent necessary back-
ground knowledge, which controls the
generalization process and can range
from the single, most generalized root
concept, to the most specific concepts
corresponding to the specific values of
attri-butes in the database [10,20].
There has been much research effort
made using AOI ap-proaches. Carter
and Hamilton [21] proposed more
efficient meth-ods for AOI, while
Cheung [22] wused a rule-based
conditional concept hierarchy to extend
the traditional approach to a condi-
tional AOI, thereby allowing different
tuples to be generalized through

different paths, depending on other
attributes of the tu-ples. Hsu [23]
extended the basic AOI algorithm to
the generaliza-tion of numeric values,
and Chen and Shen [20] proposed a
dynamic programming algorithm based
on AOI techniques to find generalized
knowledge from an ordered list of data.
Several inde-pendent groups of
researchers have combined fuzzy
concept hier-archy procedures with
AOI [2,24-26]. A fuzzy hierarchy of
concepts reflects the degree to which a
concept belongs to its direct parent
concept. More than one direct parent of
a single concept is allowed during
fuzzy induction. AOI has also been
integrated with other applications to
induce domain dependent generalized
knowledge [11-18,27,28].

The above methods, however, all
concentrate on mining positive
generalized knowledge. To the best of
our knowledge, the mining of multi-
level negative generalized tuples has
not been addressed. The only studies
similar to our work are those concerned
with negative association rule mining
methods. According to the
classification scheme proposed by Tan
et al. [29] there are three approaches
for the mining of negative association
rules or patterns. The first notes the
absence of a certain item as a negative
item [30,31]. After selecting a small set
of negative items that we are interested
in, we can augment the database by
adding these negative items to
corresponding transactions. In this way,

existing association rule mining
methods can be used to find negative
association rules. However, as pointed
out in Tan et al. [29], the major
weakness of this approach lies in the
fact that it can only handle a small
number of negative items. When the
number of negative items is large, the
computation time becomes terribly
long.

The second type is a neighborhood-
based approach known as indirect
association [32,33]. A pair of items a
and b, is said to have indirect
association if there is an item set Y
such that support(a, Y) and support(b,
Y) are both high, while support(a, b) is
low. In other words, a and b are
replacements for each other in the
sense that they are seldom purchased
together, but at the same time, there are
a number of other items commonly
purchased together with them.
Although this approach is interesting, it
iIs incapable of finding negative
associations between items at multiple-
levels in hierarchies.

The third type relies on a concept
hierarchy to estimate the ex-pected
support of an itemset. In this way, the
methods can deter-mine whether an
itemset is negative or not [34,35].
Although the methods also use concept
hierarchy to estimate the expected sup-
ports of the itemsets, there are some
important differences be-tween this
method and our approach:

(1) Their databases are transactional,
while ours is relational.

(2) They use a single hierarchy for
the entire database, but we set a
hierarchy for every attribute.

(3) The outputs are different. They
generate negative associa-tion rules,
but we generate negative generalized
tuples.

(4) Their negative association rules
are composed of original items, while
our negative generalized tuples are
composed of original items as well as
generalized items from the hierarchies.

(5) They use a concept hierarchy to
estimate the expected sup-ports of
itemsets rather than generating patterns
with gen-eralized items in the
hierarchies. In this work, we do both.

In short, we take a fundamentally
different approach to that which has
been discussed thus far. Our goal is to
develop an effi-cient mining method
for discovering negative knowledge
across different levels of taxonomies
from relational databases.

3. Problem formulation

In this section, we define the problem
of mining global negative generalized
tuples from a relational database. Let A
={al,a2 an} be a set of attributes.
The value domain of each attribute ai is

associated with a corresponding
concept hierarchy tree Ti. A concept
hierarchy represents a taxonomy of
values for an attribute domain that are
partially ordered according to a
specific-to-abstract relation. A value in
a tree is also called a node. Let vk,i
denote the kth node of tree Ti, where
the sequence of nodes is numbered
according to some tree traversal order.
Let Ivi(vk,i) denote the level of value
vk i; let leaf(Ti) denote the set of leaf
nodes of tree Ti; and let nonleaf(Ti)
denote the set of non-leaf nodes of tree
Ti.

Example 1. Let us consider a small
research grant database with 20 tuples
and 4 attributes, as shown in Table 1.
To save space, all concept hierarchies
are shown only in Appendix A. In Fig.
Al in Appendix A, there are four
attributes with four concept hierarchies,
T1, T2, T3 and T4, respectively.
Suppose the node labels are numbered
according to the level order traversal.
Now, we can find the values v10,2 =
Spanish, v3,2 = ‘Liberal arts’ in
hierarchy T2 as shown in Fig. 1.

Moreover, we have Ivli(vli2) = 1,
Ivi(v9,2) = 3, leaf(T2) = {History,
Music, Spanish, French

Software_eng,
Information_tech}.

Based on these notations, the problem
can be stated as follows:

Definition 1 (Valueset). A valueset | =
{vklil, vk2i2 vkrir} is a
non-empty set of values, where no two
values in the set belong to the same

attribute, i.e., all ip — ig. A valueset
with k values is called a k-valueset.

For example, | = {Delhi, History} is a
2-valueset, while {Delhi, New York} is
not.

Definition 2 (Tuple, Rid). Let m be the
number of attributes in the relation. A
primitive tuple t is an m-valueset
whose each value is in leaf(Ti) for
some i. Further, a generalized tuple g is
an m-valueset whose each value is in
leaf(Ti) or nonleaf(Ti) for some i. A
relational database D is a set of
primitive tuples. Each tuple in database
D is associated with a unique identifier
Rid.

Definition 3 (Cover). For each value
vki, let cov(vk,,) denote the cover of
value vk,i, which is the set of Rids of
primitive tuples in D whose values of
attribute i1 are vk,i or descendents of
vk,i in the concept hierarchy Ti. For
each valueset | = {vk1ili vk2 i2vkrir},
cov(l)

= cov(vkl,il) n ... n cov(vkrlIr) (L 616
n).

Example 2. In Table 1, each record is
called a primitive tuple and has a
unique number Rid. From Table 1, we
find that cov(New York) = {2, 8, 12,
20}, cov(Physics) = {8, 11, 12} and
cov{New York, Physics} = {8, 12}.
After performing the generalized
process, the cover of the abstract value
Is the union of the cover of all its
descendents in the concept hierarchy

tree. Therefore, we have cov(USA) =
{2, 5 8, 11, 12, 17, 19, 20},
cov(Science) = {2, 8, 11, 12, 14} and
cov(USA, Science) = {2, 8, 11, 12}.

Definition 4 (Support). The support of
a valueset | in a database D, sup(l), is
the number of Rids in cov(l) versus the
total number of tuples in D, as shown
in Eq. (1):

lcov(l)| :

Sup()=L-; = (1) Example 3. The
cardinality of |cov(USA, Science)| =
{2, 8, 11, 12}| = 4 and |D| = 20. So, we
obtain sup(USA, Science) = 4/20 =
20%.

Real data tends to be dirty, noisy and
error-prone and a lot of noise may be
hidden in the data. Therefore if the
frequency of some value among the
values in the database is too small it is
more likely to be a noise rather than
information. If the support of a value is
too small such values as noise and
pruned to reduce the search space.
Hence, a minValueSup threshold is
necessary to ensure that the generalized
tuple is statistically significant.
Definition 5 (minValueSup). A value
vki is called a frequent value (fv) if
sup(vk,i) p minValueSup as specified
by the user. A candidate valueset (cl) is
a non-empty valueset, where each
value in the set is a frequent value.

Example 4. Consider the relation
shown in Table 1. Assume that
minValueSup = 15%. Table 2 shows
partial results for the values at all
levels, where the right hand column

indicates whether these values are in
set FV or frequent values. We keep the
values with support p minValueSup
(15% in this example). The cover field
records the Rids of those primitive
tuples in Table 1 whose values are
descendents or the same as the table
values in the concept hierarchy.
Furthermore, all the values are sorted
from abstract concepts to specific
concepts.

In addition to the minValueSup
constraint, the other pruning threshold
IS minExpectedSup. An expected
support is the expected probability that
a valueset would occur if all values in
the wvalueset are independent. In
probability theory, two values X and Y
are independent if P(X u Y) = P(X) x
P(Y). According to the theory, we can
define the expected support of cl as
follows:

exSup(cl) = sup(vkl,h)x sup(vk2,i2)x--
-x sup(vkr,ir)(1 6 r6 n)m

Since we are searching for negative
generalized tuples whose actual
frequencies are much lower than
expected ones, we must set a
minExpectedSup threshold to filter out
the valuesets which cover only a tiny
fraction of the data. By setting the
threshold of minExpectedSup properly,
we can remove many unimportant
valuesets, and speed up the
computation.

Definition 6 (minExpectedSup). A
potential valueset (pl) is a cl whose
expected support is not less than

minExpectedSup threshold.

Table 1

Synthetic relation showing research
grants with 20 tuples and 4 attributes.
In Section 1, we mentioned that an
interesting negative generalized tuple
must satisfy three additional
constraints. Obvi-ously, the potential
valuesets in Definitions 5 and 6 satisfy
the first constraint, including the
minimal value support threshold and
the minimal expected support
threshold. In order to satisfy the second
constraint, the strong negative
association constraint, we must define
the interest measure of a negative
generalized tuple.

As mentioned above, a negative tuple
represents a large deviation between
the actual and the expected support of
the tuple. The larger the deviation, the
more interesting the tuple is considered
to be [36]. Hence, the interest measure
of a valueset is defined in terms of the
unexpectedness of the valueset.

Definition 7 (Interest, mininterest). The
negative interest measure of pl,
nim(pl), is obtained by exSup(pl) sup
(pi)’

This measure is greater than one when
the actual support value is lower than
the expected support value, indicating a
negative dependence. The larger the
value is above 1, the greater is the
negative dependence. A potential
valueset pl is interesting if nim(pl) p
mininterest, where mininterest is a
user-specified constant. An interesting

negative generalized tuple ng is an
interesting negative m-valueset.

Example 5. Following Example 4,
Table 3 shows the partial results for the
candidate valueset (cl). Assume that
minExpectedSup = 2% and minlinterest
= 2.5. The last valueset cl4 is not a
potential value- set, because exSup(cl4)
is less than minExpectedSup.
Moreover, only the first valueset is
interesting, because nim(cll) p
minlinterest.

In addition to the pruning and interest
constraints, two redundant cases need
to be considered.

Definition 8 (Redundant valueset).
Case 1: A valueset pla = {vk1il,
vk2,i2vkr,ir, vkr+1ir+1} is redundant if
there is a valueset

plb = {VK1,i1, vk2,i2 Vkr,ir},
where nim(plb) p nim(pla). Case 2: A
valueset pla = {vklil, vk2 i2 vkrir}
Is redundant if there is a value-

set pl'a = {vki>n, vk2>12,..., vkrr},
where every value in pla is a
descendant or the same as the
corresponding value in pla, and
nim(pl'a) P nim(pla).

Example 6. Suppose there are four
negative valuesets, as shown in Table
4. The valueset pll is a subset of
valueset pl2, and nim(pl2) < - nim(pl1).
We regard pl2 as redundant and it
should be removed. Another case is for
the last two valuesets. Valueset pl3 is
more abstract than pl4, and nim(pl3) p
nim(pl4). We keep the more gen-eral
valueset in this case.

3.1. Problem statement

Given a relational database D and a set
of thresholds (minValue- Sup,
minExpectedSup, mininterest), the aim
is to find all non-redun- dant interesting
negative generalized tuples.

4, Global negative attribute-
oriented induction

In this section, we propose a novel
GNAOI approach for mining multiple-
level negative generalized tuples from
a relational data-base. The algorithm
combines attribute values with their
concept hierarchies to induce the
negative generalized knowledge. A
hierar- chy-information encoded table
[37], which stores the generalized
identifier (GID) code of the
corresponding attribute value and cover
lists [38] (i.e., Rid-lists) is adopted to
save space and speed up the
computation. Furthermore, both the
downward level closure property and
upward superset closure property are
employed in the algorithm to
efficiently generate global negative
generalized knowledge. The input of
the GNAOI algorithm includes three
parts: (1) a task-related relation; (2) a
set of concept hierarchies; and (3) a set
of thresholds. The output consists of
non-redundant interesting negative
generalized tuples learned from the
relational data. The major steps of the
GNAOI are shown in Fig. 2. We first
discuss how to collect and transform
the input relational data into the
hierarchical-information encoded table.
Then we discuss in detail the algorithm
designed for inducing all negative

generalized tuples. Finally, the pruning

and transformation processes are
shown.
4.1. Collect and encode the task-

relevant tuples

GNAOI first collects the dataset that is
relevant to the learning task using
relational database operations, e.g.,
projection and selec-

Table 3

Partial results for candidate valueset
(CL).

Table 4

tion. The retrieved task-relevant tuples
are stored in a table called the initial
relation table. Each tuple in the initial
relation has a unique identifier called
Rid. Next, the initial relation can be

trans-formed into a hierarchical-
information encoded table, which
stores the GID code of the

corresponding attribute value. A GID is
a number string containing the route
information for an attribute value in a
concept hierarchy.

Example 7. In Table 1, the amount
attribute is the fourth attribute in the
tuple. Suppose the value of the amount
1s ‘19800°. This can be encoded as
‘4121°, where the first digit ‘4’
represents the fourth attribute in tuple,
the second ‘1’ represents the ‘Low’ at
level-1, the third ‘2’ represents ‘15000-
24999’ at level-2, and the fourth ‘1’
indicates 15000-19999° at level-3
(Fig. 3). checked

It is beneficial to transform the original
object values to GID codes. First, an
encoded string contains complete route

Ll

informa-tion for an attribute value
which provides a self-explanatory
advantage. Second, a code requires
fewer bits than the corre-sponding
object-identifier which reduces the size
of the tuples. Encoding can also be
performed during the collection of
task-relevant data, so there is no extra
encoding pass required. The taxonomic
information for each value in Table 1 is
encoded as a GID code, following the
encoding rule mentioned above. The
results are shown in Table 5 (T).

4.2. The NGT algorithm

The generalization of negative
valuesets is a difficult task and the
computational load is heavy. How to
effectively identify poten-tial negative
tuples is the key problem. In this study,
several useful constraints are used to
generate and measure the potential
value- sets. Both the downward level
closure property and upward super-set
closure property are included in the
algorithm to improve the generalization
efficiency. The first step in this
algorithm is to scan the encoded table
T, and find the set of all values (CV)
for all levels. Next, the set of frequent
values (FV) for all levels is generated,
as defined in Definition 5, and sorted
by a specific rule.

Let VSk be the set of negative k-
valuesets. All k-valuesets (k p 2) are
generated using VSk_1 and FV. The k-
valueset generation is repeated until k
is equal to the number of attributes in
the tuple. It is important to note that 1-

valuesets (VS1) is the same as FV.
Finally, we obtain all negative
generalized tuples by uniting all k-
valuesets. The details of the NGT
algorithm are shown in Fig. 4.

First, a pass is made over T to produce
the set of all values for all levels CV.
Moreover, the support for each value at
all levels is calculated. The cover (rids-
list) is recorded at the same time by
scanning T once. Using the cover
technique, it is not necessary during the
k-valuesets generalization process to
scan the dataset any more. All frequent
values of all levels (set FV) are
generated in line 2. The steps can be
formulated in Fig. 5.

The values in FV are then sorted
according to their attribute and concept
level, from abstract to specific. For
example, if there is a FV ={11**, 1111,
12*%*, 111*, 112*, 122*, 1222}, then
the sorted FV = {11** 111*, 1111,
112*, 12**, 122*, 1222}. The sorting
is beneficial for the subsequent
generalization. It is important to note
that the sorting process can also be
performed at the init-pass (line 1) step
by adopting appropriate data structure;
no extra sorting pass is required.
Furthermore, the FV is the same as 1-
valuesets (VS1) which are used to
generate the 2-valuesets.

After finding the 1-valuesets, lines 5-7
proceed with the deriva-tion of the
negative Kk-valuesets (k p 2). The

negative valuesets in set VSk_1 (found
in the (k—1)th pass) and the frequent
values in set FV are used to generate
the negative valuesets VSk in each
subsequent pass, say pass k, using the
function negative-gen. In this function,
the deviation between the actual and
the expected support of each valueset is
calculated. After this, two useful
properties called downward level
closure property and upward superset
closure property are adopted to prune
unnecessary candidates.

Algorithm GNAOI.

Input: (1) A task-related relation; (2) a
set of concept hierarchies; (3) a set of
thresholds.

Output. Non-redundant interesting
negative generalized tuples mined from
the task-related relation.

Method. Four steps:

Step 1. Collect and encode task-

relevant tuples.

Step 2. Discover all negative

generalized tuples.

Step 3. Remove redundant negative

generalized tuples.

Step 4. Transform and Output final

tuples.

Lemma 1 (Downward level closure

property). If a k-valueset {vl1, v2
vk} is not a potential valueset,

then all of the valuesets f v1, v'2,...,

vk}, where v\ is either vi or a

descendant of vi, are not potential

valuesets.

Proof. The support of a value is always

larger on the abstract level than that on
the specific level That is, the higher the
concept level, the larger the expected
support. Consequently, if a valueset is
not a potential valueset at the higher
level, then its valuesets at the lower
level are also not.

Therefore, the lemma follows.

For example, if {11**, 32**, 221*} is
not a potential valueset, then {111%*,
321*, 221*}, {112*, 32** 2212},
{11**, 3213, 221*}, {1123, 3211,
2212} are also not potential valuesets.
O

Lemma 2 (Upward superset closure
property). If a k-valueset {vi1, v2

vk} is not a potential valueset,
then all of its (k + 1)-supersets are not
potential valuesets.

Proof. The expected support of a k-
valueset is always larger than that of its
(k + 1)-superset. That is, the more
values in the valueset, the smaller the
expected support. Consequently, if a
valueset is not a potential valueset, then
none of its supersets are either.
Therefore, the lemma follows.

For example, if {11 **, 32**} is not a
potential valueset, then {11**, 32**,
221%}, {11**, 32**, 21**, 42**} are
also not potential valuesets.

Fig. 6 gives the negative-gen
algorithm, which takes VSk_1 and FV
as arguments, and returns VSk, the set
of all negative k-valuesets. The join

step uses a double loop (line 1-3) to
generate the k-valuesets. However,
each valueset in the VSK 1 contains
different attribute values. Before
generating a new valueset, the
algorithm must find the other attributes
which do not exist in the valueset. It is
a nontrivial task to find these attributes
and join them with existent

Table 5

Results encoded from Table 1: T
Algorithm (NGT) For discovering all
negative generalized tuples.

Input. (1) The hierarchical-information
encoded table T; and (2) the set of
thresholds.

Output. All interesting negative
generalized tuples.

Fig. 6. Negative-gen algorithm.
valuesets. For efficient joining, the FV
is split into several FV(n), in which the
argument n represents the attribute. For
example, FV(1) = {11**, 111*, 1111,
112*, 12** 122*, 1222...}, and FV(2)
= {22** 221*, 2212, 222*..}. The
data required for the FV can be
structured as a dynamic array list or a
tree structure. After the join step, the
algorithm examines whether the new
valueset is marked, which will be
ignored directly. On the other hand,
line 5 calculates the expected support
of valueset (u, v). As mentioned in
Definition 6, if exSup((u, v)) is less
than the minExpectedSup threshold,
valueset (u, v) will be discarded (line 6)
and no more the superset of valueset (u,
v) will be generated. Further, according
to the downward level closure property,
all of the descendent k-valuesets of

valueset (u, v) will be also discarded
(line 14). On the other hand, if
exSup((u, v)) is larger than
minExpectedSup, lines 7-9 are used to
calculate the interest measure. Finally,
the algorithm keeps the Kk-valuesets
whose nim((u, v)) measures are larger
than the minlinterest threshold (lines 10
and 11). Here, we also check if (u, v)
matches the condition of redundant
case 1 in Definition 8, by examining if
there exists any subset of (u, v) with a
stronger negative interest value. If so,
(u, v) is redundant. Otherwise, it is
insert into VSk.

After performing the negative-gen
function, the NGT algorithm unites all
k-valuesets, where k is from 2 to |attr]
(line 8, Fig. 4). We thus obtain all
negative generalized tuples. The final
step is to convert all negative k-
valuesets to the generalized tuple (line
9, Fig. 4). The step 1s given in Fig. 7. o
Example 8. The 2-valuesets {1231,
21**} can be converted to the
generalized tuple {1231, 21**, any,
any}, while the 3-valuesets {211%*,
31**, 42**} can be converted to the
generalized tuple {211%*, 31**, 42**,
any}.

Fig. 8. Redundant-pruning algorithm.
Table 6

Negative generalized tuples generated
by the GNAOI algorithm.

4.3. Pruning and transformation

The negative generalized tuples
discovered by the NGT algo-rithm
include multiple-level values.

However, not every generalized tuple is
worth being presented to the users. If a
generalized tuple is more interesting
than a tuple which is more specific
(every value in the tuple is the same or
at a lower level), the latter is
considered a redundant tuple, as
defined in Definition 8, Case 2. Using
the algorithm shown in Fig. 8, all
redundant generalized tuples can be
removed. Since the interest value
measures the negative depen-dence, the
algorithm first sorts the generalized
tuples by their interest value, from
larger to smaller. The removal process
is per-formed starting from the tuple
which has the largest interest.

The final step is to transform and
output all non-redundant negative
generalized tuples. To do so, each GID
code ofg is converted to an original
value. Next, the final tuples are output.
For example, the encoded tuple (111*,
211*, Any, 41**) will be converted to
(India, Liberal arts, Any, Low).

5. Experiments

In this section, we discuss several
experiments conducted to evaluate the
performance of the proposed algorithm.
The GNAOI algorithm was
implemented using the Java
programming language and tested on a
PC with an Intel Core Duo 3.0 GHz
processor and 2 GB main memory
under the Windows XP operating
system. A real dataset of credit card
data was used in the experiments. To
make the time measurements more
reliable, no other application was

running on the machine while the
experiments were running.

Since the traditional AOI method does
not focus on negative tuples, the
objective of this experiment was not to
compare the two algorithms. Instead,
we focused on evaluating the
effectiveness and performance of the
GNAOI algorithm under the various
parameter settings. Specifically, its
performance was studied with respect
to four factors, including: (1) the
number of tuples; (2) the number of
attributes; (3) the minimal expected
support thresholds; and (4) the
interest thresholds. The run time and
the variation of the number of negative
generalized tuples with the change in
value of the factors were noted.

5.1. Real dataset

The real dataset used in this study
consists of credit card data collected
from the survey research center at a
university in Taiwan.

The dataset consists of 2 million tuples,
each of which has 27 attri-butes
including card type, frequency, sex,
age, occupation, marital status,
education, blood type, income,
constellation, consumption pattern, and
so on. We invited two domain experts
who select six attributes whose values
are well suited to repeated
generalization and create concept
hierarchies from them. The selected
attributes are education, age,
occupation, constellation, income and
credit card consumption. The concept
hierarchy for each attribute is shown in

|

Fig. A2 in Appendix A. Since the
attribute values of ori-ginal dataset are
stored as specific codes defined by the
research center, we must first transform
these attribute values to the leaf
concepts of concept hierarchies, i.e.,
the GID code, before the gen-
eralization tasks can be started.

5.2. Negative generalized tuples

In this section, we discuss the negative
generalized knowledge produced by the
GNAOI algorithm. In the test, we
randomly ex-tracted 50000 tuples, each
with 6 attributes, from the credit card
dataset to mine the negative
generalized tuples. The parameters are
as follows: minValueSup = 10%,
minExpectedSup = 2% and the interest
measure threshold is 1.2. Applying the
GNAOI algorithm and repeating the
extraction and mining process 50 times,
we get the average amount of
interesting negative generalized tuples
IS 637. Some interesting negative tuples
are shown in Table 6. The values ‘Any’
are represented by ‘-’.

Each of the tuples in Table 6 can be
interpreted as negative generalized
knowledge. The table shows some
interesting observa-tions. From tuples
1, 2, and 3, we see that the card
consumption of full-time housewives
with low incomes may be higher than
ex-pected. One possible reason could
be that since housewives usually
manage a whole household they spend

more money with credit cards. Tuple 5
shows young-adult sales may earn low
income but spending more money.
Tuples 7 and 8 show advanced-age
home workers are seldom high
education, especially between 35 and
49 years old. Tuples 11 and 12 indicate
that older students are conservative
about spending money with credit
cards. Tuples 13 and 14 show that older
students seldom have high income,
especially in the 35-49 age bracket.
From tuples 15, 16 and 17, we see that
young-adult workers with the Air
element constellation and low income
may spend more money with credit
cards. In contrast, tuples 18 and 19
show that the Earth element
constellation group is conservative at
spending money with credit cards.
Tuple 20 points out those younger
high-level workers with high income
are seldom low education.

5.3. Performance evaluations

In this section, we describe a series of
experiments evaluating the
performance of the process. In the first,
we evaluate the run time for the
GNAOI algorithm using varied data
size (number of tuples) from 5,000 to
50,000 but fixed all thresholds. The
thresh-olds are as follows:
minValueSup = 10%, minExpectedSup
= 2%, and the interest measure
threshold is 1.2. In addition, different
numbers of attributes are evaluated: 4
attributes (attr-4); 5 attri-butes (attr-5);
and 6 attributes (attr-6). We repeat the
evaluations 50 times. Each time,

the evaluated datasets are randomly
extracted from source database. The
average results of computation are
summarized in Fig. 9. From this figure,
we can see that the time required
increases as the number of tuples
increases. Moreover, when more
attributes are given, more run time is
required. This is because the GNAOI
algorithm generates the candidate
valuesets by recursively combining
distinct attribute wvalues. Hence, the
number of attributes has a significant
effect on the run time.

We also study how the number of
generalized tuples changes as the data
size changes. Fig. 10 shows the results
of filtering for dif-ferent data sizes and
different numbers of attributes. The
results show that more negative
generalized tuples are generated as
more attributes are considered. The
reason is that more attributes result in
more negative generalized tuples,
which in turn generates more
interesting tuples. However, the
number of generalized tuples re-mains
almost the same for the same number
of attributes, even though the data size
changes. The reason for this may be
that, since the data are all drawn from
the same dataset, the data sets have
similar properties, even though their
sizes are different.

Next, we study how the
minExpectedSup threshold influences
the run time of the GNAOI algorithm.
To this end, we set five thresholds and
fix the data size at 25000 and the
number of attri-butes at 6. The other

thresholds are set as follows:
minValueSup = 10% and the interest
measure threshold is 1.2. We also
repeat this evaluation 50 times. Each
time, we randomly extracted 25000
tuples from source database. Fig. 11
shows the average per-formance curve
of computation. Time required
decreases as the ex-pected support
threshold values increase. The reason is
that when the thresholds increase, the
number of candidate valuesets de-
crease, which in turn decreases the run
time.

We also demonstrate how the number
of negative generalized tuples changes
as the minExpectedSup values change.
Fig. 12 shows the results for different
thresholds. One can see that the

Fig. Al. Concept hierarchies for
research grant data.

Fig. A2. Concept hierarchies for credit
card dataset.

number of negative generalized tuples
decreases as the threshold thresholds
are used to filter out the valuesets;
smaller thresholds values get larger.
This result is quite reasonable, because
the naturally result in more valuesets.

As mentioned earlier, an interest
measure is proposed to filter out
uninteresting tuples. In the final
experiment, we repeat 50 times to
evaluate the influence of the interest
measures. The experimental parameters
are as follows: data size is fixed at
25000 tuples; number of attributes is 6;
minValueSup IS 10%; and

minExpectedSup is 2%. The run time
curve with different interest measures,
from 1.1 to 1.8 is illustrated in Fig. 13.
Fig. 14 shows the variation of the
number of negative generalized tuples.
From these figures, we can see that by
setting an appropriate interest measure,
one can easily filter out many
uninteresting negative generalized
tuples and reduce the computation
time.

6. Conclusion

We have proposed an effective method,
the GNAOI method, for generating all
negative interesting generalized
knowledge at one time. The method
employs the expected support concept
to filter out uninteresting knowledge. In
addition, three constraints and two
useful closure properties are designed
to reduce the search space. The method
provides a simple but efficient way to
carry out negative knowledge
generalization from a relational
database. A real-life dataset is used for
experiment and the results show that
the proposed method can induce more
comprehensive negative generalized
knowledge from relational database.
There are two possible directions for
future research. First, in complicated
business or distributed environment,
there is an urgent need for mining
negative generalized knowledge from
multi-databases. The proposed GNAOI
method can be integrated with existing
multi-database mining method [39,40]
to expand its application scope.
Second, it would be interesting to

extend the wusage of background
knowledge by using domain
generalization graphs rather than
concept trees or using fuzzy concept
trees rather than crisp concept trees.

